NOAA Photo Library Banner
Takes you to the Top Page Takes you to the About this Site page. Takes you to the Contacts page. Takes you to the HELP page. Takes you to the Credits page. Takes you to the Collections page. Takes you to the search page. Takes you to the Links page.


Voyage To Inner Space - Exploring the Seas With NOAA Collect
Catalog of Images

16550 thumbnail picture
Figure 24. A spring shock absorber. No information is available concerning the inventor or the use of this device.
16551 thumbnail picture
Figure 25. A roller guide, devised by Jules Le Blanc following a suggestion of Prince Albert I of Monaco. Used to minimize chance of tangling cables during oceanographic operations.
16552 thumbnail picture
Figure 26. Ball bearing swivels devised by Jules Le Blanc to prevent untimely twisting of cables, getting them caught on hull projections, or even breaking of lines.
16553 thumbnail picture
Figure 27. The Aime Olive, a large weight attached to the cable immediately before a bottom dredging device. This weight would keep the dredge in contact with the bottom. Although used by fishermen prior to its oceanographic use, Aime's adaptation of this concept apparently marked its first use in oceanography. Circa 1840.
16554 thumbnail picture
Figure 28. Lead weights used to depress the front of a net or trawl being dragged across the bottom.
16555 thumbnail picture
Figure 29. Dredging harrows used to stir up the bottom in order to capture the small crustaceans and other creatures that lived there. This instrument was fabricated at the Oceanographic Museum in 1939.
16556 thumbnail picture
Figure 30. Nansen releasing devices used for closing plankton nets. This device was invented by Fridthof Nansen about 1900 and apparently used aboard the MICHAEL SARS. A messenger activated this mechanism which in turn "strangled" the net by closing off its open end and capturing the fauna in the net.
16557 thumbnail picture
Figure 31. Aime messenger ca. 1843. The Frenchman Georges Aime was among the fir st to systematically employ the principle of a messenger in order to communicate with submerged instruments. The messenger was sent down the line and activated some form of opening or closing mechanism on the sampling instrument. Aime used only solid messengers which had to have the line or cable run through them.
16558 thumbnail picture
Figure 32. Enjalbal messenger, fabricated by Louis Enjalbal, a mechanic on the PRINCESS ALICE, in 1906.
16559 thumbnail picture
Figure 33. Riva messenger, fabricated by Paul Riva, the mechanic on the EIDER, a small research vessel operated by the Oceanographic Museum at Monaco in the early 1900's.
16560 thumbnail picture
Figure 34. Gilson messenger, devised by Professor Gustave Gilson of the University of Louvain and delegate from Belgium at the Permanent International Council for the Exploration of the Sea , to intiate the operation of his plankton meter.
16561 thumbnail picture
Figure 35. Zwickert messenger, possibly devised by the German instrument maker Adolf Zwickert who was known for creating numerous scientific instruments.
16562 thumbnail picture
Figure 36. Cros messenger. These messengers were fabricated by the mechanic Jean Cros of the Oceanographic Museum at Monaco at the request of Dr. Jean Brouardel. The messengers were very narrow and streamlined and capable of being used with modern equipment. They were probably tested about 1958 aboard the WINNARETTA SINGER.
16563 thumbnail picture
Figure 37. Spring messengers with rotating closing mechanisms. In 1923, the Danish scientist Martin Knudsen described and tested this type of messenger. The goal was to find a form and weight of messenger that would rapidly descend a cable without becoming entangled. Subsequently messengers of this type were most frequently used on research ships throughout the world.
16564 thumbnail picture
Figure 38. Hinged messenger, a model first proposed by the hydrographic laboratory at Copenhagen in 1914. The models shown are of a later date.
16565 thumbnail picture
Figure 39. Spiral opening messenger - in the design of these messengers, the groove which allows the device to be placed on the cable is in the form of an S or Z. The messenger is locked on the cable by means of a rotating part at the top of the messenger. A simpler non-locking version of this messenger was produced by HYTECH, a California firm.
16566 thumbnail picture
Figure 40. Thoulet soluble cartridge messenger for delayed release of instruments. These "soluble weights" were designed to initiate the functioning of an immersed device at a pre-determined time. Thoulet had apparently designed this device for use with sampling nets . He started tests with these in 1893 in Lake Gerardmer and provided samples for Prince Albert I to use at sea.
16567 thumbnail picture
Figure 41. Kiel Commission Hydrometers - these hydrometers were created in 1870 at the initiative of the Commission of Scientific Studies of German Waters at Kiel.
16568 thumbnail picture
Figure 42. Buchanan hydrometer made at the request of John Y. Buchanan during the CHALLENGER Expedition. These were instruments with variable weight and volume. Two of these instruments were improved and modified by Victor Chabaud and used during the Belgium Antarctic Expedition from the BELGICA from 1897 to 1899.
16569 thumbnail picture
Figure 42 (continued.) Various Buchanan hydrometers with associated apparatus in their instrument cases.
16570 thumbnail picture
Figure 42 (end.) A Buchanan hydrometer instrument case with the initials of John Y. Buchanan.
16571 thumbnail picture
Figure 43. Nansen total immersion hydrometer, an instrument of variable weight and constant volume. The fact that the instrument is completely immersed during use explains the term "constant volume." Its principle was first put forth by Giuseppe Pisati in 1890 and adopted by Fridthof Nansen in 1900. In 1901 it was used by Jacob Schetelig, Nansen's assistant, from the MICHAEL SARS.
16572 thumbnail picture
Figure 44. Thoulet total immersion hydrometer, designed by Professor Julien Thoulet for the purpose of studying the density of water from depth for the purpose of studying sub-surface currents. Professor Thoulet produced this relatively small sampling device of 200 cubic centimeter volume with Professor Henry Adolpe Chevalier of the University of Nancy.
16573 thumbnail picture
Figure 45. Pettersson small chain hydrometer, designed by Professors Otto and Hans Pettersson in 1917. This instrument eliminated difficulties associated with the surface tension of the sample as well as variations of volume. A small metal chain helped achieve a balance by compensating for the buoyancy of the float as a function of the density of the liquid.
16574 thumbnail picture
Figure 46. Regnault pycnometers, instruments first mentioned by the physicist Henri-Victor Regnault, a professor at the College of France, in 1843. These instruments were used to measure the density of liquids which he was studying to obtain their specific heat.
16575 thumbnail picture
Figure 47. Sprengel pycnometer, first described by the German chemist Hermann Sprengel in 1873. He had used this instrument for a number of years. It had great precision and was easy to fill. Later the German chemist Wilhelm Ostwald partially modified it, replacing the original U tube with a single-sided one.
16576 thumbnail picture
Figure 48. Knudsen pycnometer, described by the Danish physicist and hydrographer Martin Knudsen in 1902. This instrument was designed to make precise laboratory measurements of the density of sea water.
16577 thumbnail picture
Figure 49. Fery refractometer, an instrument first suggested by Julius Hilgard of the United States Coast and Geodetic Survey to measure the density of sea water by relating the index of refraction of a liquid to its density. The instrument shown was developed by the Frenchman Charles Fery in 1891.
16578 thumbnail picture
Figure 50. Berget double deviation refractometer, developed and devised by the Frenchman Alphonse Berget, professor at the Oceanographic Institute. From about 1911 onward, he was concerned with developing an instrument to measure the density of a liquid at sea by a method that would not be affected by the ship's motion. He described the pictured instrument in 1925.
16579 thumbnail picture
Plate 4. Knudsen Burette, an apparatus for the determination of salinity of water samples.
16580 thumbnail picture
Figure 51. The Knudsen Burette, introduced by its inventor at the first international conference for the exploration of the sea in 1899, became one of the most used instruments in the world for determining salinity of a water sample.
16581 thumbnail picture
Figure 52. Richter burettes, fabricated by Carl Richter at an indeterminate date. It is certain that the firm of Richter and Wiese made this type of burette for measuring salinity up until the recent times.
16582 thumbnail picture
Figure 53. Schmidt burette - although little information exists regarding this instrument, it probably was invented by the German chemist Paul Schmidt for use on the VALDIVIA expedition in 1898-1899.
16583 thumbnail picture
Figure 54. Pellet burette - this instrument was produced by the French chemist Henri Pellet. It uses the same principle as that of the Richter or Schmidt burette. It has an automatic zero level, in which the reactive reservoir is pressurized by a rubber bulb.
16584 thumbnail picture
Figure 55. Boutron and Boudet hydrometric devices for measuring density of fresh water.
16585 thumbnail picture
Plate 5. Knudsen apparatus for the determination of the nitrogen and oxygen levels in sea water. Model with three burettes.
16586 thumbnail picture
Figure 56. Jacobsen device for extracting gases from sea water. This device was invented by Professor Oscar Georg Jacobsen, a member of the German Baltic expedition of 1871-1872. It was based on an instrument conceived by Robert Bunsen. Water samples were obtained by Meyer bottle.
16587 thumbnail picture
Figure 57. Dittmar device for extracting gases from sea water. This device was described by the British professor William Dittmar of Anderson's College in Glasgow. He used it to analyze sea water sampled during the CHALLENGER expedition. It complemented the use of the Jacobsen apparatus used by John Y. Buchanan during the CHALLENGER expedition.
16588 thumbnail picture
Figure 58. Classen device for the measurement of carbon dioxide in sea water. The German chemist Alexander Classen elaborated on the use of this device in 1876. The work of Wilhelm Borchers in 1878 on the determination of carbonic acid in mineral water that led to the use of this instrument. After improvement , it was used by Hercules Tornoe on the Norwegian North Atlantic expedition.
16589 thumbnail picture
Figure 59. Dittmar device for measuring carbon dioxide in sea water. This device was used by William Dittmar, then professor at Anderson's College in Glasgow for analyzing sea water collected by the CHALLENGER expedition. This instrument is a variant of the apparatus designed by Alexander Classen and used by Hercules Tornoe on the Norwegian North Atlantic Expedition.
16590 thumbnail picture
Figure 60. Regnard apparatus for the study of the diffusion of oxygen in sea water. Concerned with the diffusion of air in sea water in still water, Doctor Paul Regnard, a French physiologist, invented this device based on an experiment by Julien Thoulet. He used the property that certain materials change their color in the presence of oxygen and described the device in 1891.
16591 thumbnail picture
Figure 61. Pettersson device for the measurement of oxygen and nitrogen in sea water. This device was developed by Professor Otto Pettersson who used it at the Hydrographic Station at Borno, Sweden. With this apparatus one could measure the oxygen, nitrogren, and carbon dioxide content of sea water. This instrument was first described in 1891.
16592 thumbnail picture
Figure 62. Knudsen apparatus for the measurement of oxygen and nitrogen in sea water. This was a "multiple use" device that simultaneously was able to analyze sea water for the presence and amount of a number of gases. It was developed by the Dane Martin Knudsen and used by Ingolf in 1895 and 1896.
16593 thumbnail picture
Figure 63. Sorensen device for the determination of H+ ions. This device which measured the pH of water by a colorimetric method was devised by the Danish chemists Soren Peter Lauritz Sorensen and Sven Palitsch and used during the Danish oceanographic expedition on the THOR between 1908 and 1910.
16594 thumbnail picture
Plate 6. Thoulet device for separating minerals by means of an iodine solution. This device is typical of many that Julien Thoulet, a French mining engineer, developed for the study of sediments in the ocean. Thoulet became associated with the University of Nancy and then devoted himself to oceanography beginning in 1885.
16595 thumbnail picture
Figure 64. Series of Thoulet's sieves for sorting sediment material of varying sizes on the top. On the bottom, various types of laboratory glass ware used by Thoulet in sediment studies. Thoulet was very concerned with the classificatio n of marine sediments beginning with his first interest in oceanography in 1885.
16596 thumbnail picture
Figure 65. Thoulet device for separating sediment from water. This device was developed to obtain very fine sediment samples that were still suspended in the water after passing through a series of sieves. Thoulet developed this instrument in 1878 prior to developing an interest in oceanography.
16597 thumbnail picture
Figure 66. Thoulet vertical tube for sorting sediments. According to Julien Thoulet, this device was "frequently used for the mechanical analysis of seafloor sediments being examined."
16598 thumbnail picture
Figure 67. Pelometer for the rapid sorting of sediments in water. Professor Julien Thoulet used this device on board research ships to rapidly determine the nature of seafloor sediments. It would allow quick classification into a single category such as mud, sandy silt, or muddy sand for entry into a station log. Thoulet used the pelometer described by Bouquet de la Gyre.
16599 thumbnail picture
Figure 68. Thoulet device for classifying minerals by means of an iodine solution. This device used the principle of buoyancy of solids in liquids to determine the density of the solid being tested. In this manner, mineral material in a bottom sample could be quickly determined.

PAGES - 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 |


Publication of the U.S. Department of Commerce, National Oceanic & Atmospheric Adminstration (NOAA),
NOAA Central Library
NOAA Privacy Policy | NOAA Disclaimer
Last Updated:
June 10, 2016