NOAA Photo Library Banner
Takes you to the Top Page Takes you to the About this Site page. Takes you to the Contacts page. Takes you to the HELP page. Takes you to the Credits page. Takes you to the Collections page. Takes you to the search page. Takes you to the Links page.


Voyage To Inner Space - Exploring the Seas With NOAA Collect
Catalog of Images

16600 thumbnail picture
Figure 69. Magnetic device for separating and classifying minerals. This early device that used an electro-magnet to separate minerals of different magnetic properties was conceived of by the French mineralogist Ferdinand Foque in 1879.
16601 thumbnail picture
Figure 70. Thoulet device for measuring the density of minerals by means of an iodine solution. The method used in image ship4445 was very crude but this device gave a real measurement, which although a long and delicate process, could be very precise.
16602 thumbnail picture
Figure 71. A Mohr-Westphal density balance. This instrument was first described in 1832 by the German chemist Carl Friedrich Mohr. It is a balance with two arms, where the equilibrium is reached by adding weight on a tray. This type of instrument was modified by G. Westphal who replaced the tray with an adjustable counterweight. Julien Thoulet used this type of instrument in his studies.
16603 thumbnail picture
Figure 72. Pycnometers for the measurement of the density of sediments. According to Thoulet, the apparent density of a sediment is the weight per cm cubed of the dry sediment when compressed as much as possible. The true densit y is the relation of the weight of the sample relative to the weight of an equal volume of distilled water at 4C. Thoulet studied these sediment properties.
16604 thumbnail picture
Figure 73. Thoulet device for measuring the virtual density of large samples. Julien Thoulet described this method in 1905 for determining the apparent density of pumice stones, in order to better understand the origin of these rocks which were found in abundance in bottom samples obtained by the PRINCESSE ALICE.
16605 thumbnail picture
Figure 74. Device for determining the amount of carbon dioxide in a water sampl e. This is a Schoedter apparatus which is still used today. A sample is treate d with hydrochloric acid which transforms carbonates into chlorides at which time carbon dioxide is released. The difference in weight of a before and after sample determines the weight of CO2.
16606 thumbnail picture
Figure 75. Device for determining the color of bottom samples. This device was conceived and described by Julien Thoulet in 1910.
16607 thumbnail picture
Catalog of the Oceanographic Equipment in the Collection of the Oceanographic Museum at Monaco. 8. "Supplements, Demonstration Material, Meteorology: Additions and Cumulative Index, " by Christian Carpine. Bulletin of the Institute of Oceanography. Volume 76, 1999, No. 1444.
16608 thumbnail picture
Figure 1. A plastic Secchi disk of recent origin. This disk is lowered in the water until it disappears from sight. The depth at which it disappears is a measure of the water's transparency. Father Angelo Secchi devised this method in 1865 and tested it aboard the Vatican vessel IMMACOLATA CONCEZIONE. Several models were tested of different colors.
16609 thumbnail picture
Figure 2. A model of the vessel and equipment used by the French physiologist Paul Regnard for studies of light penetration in the water and its effects on chemical and biological phenomena. In 1889 and 1890, he performed several studies aboard a tartane, a small local fishing and trading vessel.
16610 thumbnail picture
Figure 3. Brouardel's luxmeter. This instrument was constructed in 1956 at the Oceanographic Museum of Monaco by Jean Brouardel and Emile Rinck for their studies on the primary production in the Mediterranean Sea according to the methods of Steeman Nielsen. It was especially designed for photoelectric measurements in deep ocean water.
16611 thumbnail picture
Figure 4. Li-Cor photometer. This photometer was investigated by Dr. Jean Brouardel in 1974 in a quest for instruments of greater precision. He investigated several including a Li-Cor quantum/radiometer/photometer developed by industry especially for measuring light in water or in air in relation to photosynthesis. Construction date and details of study conditions are unknown.
16612 thumbnail picture
Figure 5. Compact luxmeter, used for study of light in air. Simplicity of design and use have joined with greater and greater precision of measurement in this mass-produced industry instrument. Although apparently an instrument used in meteorology, it is shown here because of the relationship between solar radiation and photo synthesis.
16613 thumbnail picture
Figure 6. Pyranometer, a sensor used to measure variations in solar radiation. It is used with a recording device, the solarigraph. The principle of operation of the pyranometer is that of the thermophile of the Dutch Willem Moll. This principle was adapted by Dr. Ladislaw Gorczynski of the Meteorological Institute of Varsovia in 1924. The instrument shown was probably made in the 1940's.
16614 thumbnail picture
Figure 7. Photometer recorder - most recording devices of this type are designed to be compatible with the area under which observations of radiation are made. Thus, this recorder, which recorded in units of millivolts, was designed for use with the pyranometer in the preceding image.
16615 thumbnail picture
Figure 8. Integrating solarimeter - measures energy developed from solar radiation based on the absorption of heat by a black body. The principle this instrument was designed on was first developed by the Italian priest, Father Angelo Bellani. He invented the actinometric method which is based on physical and chemical techniques.
16616 thumbnail picture
Plate I. Bifilar current meter designed by Otto Pettersson and described in 1905.
16617 thumbnail picture
Figure 9. Winch system for use with the Pettersson bifilar current measuring device. It is a hand-crank winch designed for use in less than 100-meters water depth. Prince Albert I of Monaco personally used such a winch for observations on Gorringe Bank in 1904.
16618 thumbnail picture
Figure 10. Dahl-Fjeldstad current meter - designed by assistant professor Jonas Ekman Fjeldstad of the University of Bergen in collaboration with the Norwegian engineer Odd Dahl. It automatically punched its readings on a tin strip for later reading and analysis. This system was completed in 1937.
16619 thumbnail picture
Figure 11. Lyth river current meter- this instrument is identical to that built by Ambler-Lafond. It functions according to the turnstile principle of Reinhard Woltman which dates from the end of the 19th Century.
16620 thumbnail picture
Figure 12. Quadrangular dredge - the origin of this instrument is unclear although it is similar to those used on the ALBATROSS at the end of the Nineteenth Century, the TRAVAILLEUR in 1880, and by Raffaele Issel in 1918.
16621 thumbnail picture
Figure 13. A clamshell type grab sampler - this device was meant to grab material from the upper layers of seafloor sediment for study of the embedded fauna.
16622 thumbnail picture
Plate 2. An early water sample bottle meant to preserve ocean water samples for further study of dissolved oxygen in the water.
16623 thumbnail picture
Figure 14. A Hydro Products water sampling bottle. This type of water sampling bottle was first designed by Dr. William B. Van Dorn of the Scripps Institution of Oceanography in 1956.
16624 thumbnail picture
Figure 15. Support frame for four water sampling bottles. This instrument accessory was found in the middle of pieces of scrap iron. It was made in the museum workshop as shown in the accompanying photo by Jean Comelli and Jean Cros who worked on prototypes fabricated at the Museum's workshop. It appears to be a forerunner of the modern rosette sample frame.
16625 thumbnail picture
Figure 16. Cases of bottles for preserving water for salinity measurements. The bottles were placed in crates partitioned to protect against shock. The flasks were sealed to prevent evaporation and contamination. Flasks were closed by ground glass stoppers, but the bottles were closed with rubber rings and and metal levers for ease of sealing and opening.
16626 thumbnail picture
Figure 17. Bottles for preserving water samples for the study of dissolved oxygen. Methods used for preserving water for oxygen samples differed significantly from those used for preserving salinity samples.
16627 thumbnail picture
Figure 18. Crates of bottles for water samples designated to study dissolved oxygen. The upper crate contains 15 bottles while the lower crate contains 24. Such crates have been used to store bottles with ground glass stoppers for dissolved oxygen samples since the beginning of the Twentieth Century.
16628 thumbnail picture
Plate 3. Title page of the guide to German instruments at the International Oceanographic and Marine Fisheries Exposition of 1906. A description of Apstein's mud sampling tube was found in this document.
16629 thumbnail picture
Figure 19. Apstein's mud sampler - an instrument described in the catalog of the German Section of the International Oceanographic and Marine Fisheries Exposition of 1906 as a sediment sampler although it appears to be more likely that it was meant to be a water sampler used in the study of plankton by Dr. Carl Apstein.
16630 thumbnail picture
Plate 4. An integrated model of the dredging devices and gear used aboard the PRINCESSE ALICE II. This model was displayed in the oceanographic and physical instruments display room of the Oceanographic Museum at Monaco about 1910.
16631 thumbnail picture
Figure 20. A model devised to demonstrate the quantity of common salt in the sea. The idea is that if all the salt in the sea were to evaporate it would cover an area and volume equal to the above sea-level area and volume of Africa. Dr. Walter Stahlberg conceived this idea as a means to communicate to the public amount of salt in the sea.
16632 thumbnail picture
Figure 21. A map of salinity of the surface of the ocean. This map was created by Dr. Walter Stahlberg and mounted and displayed by Max Marx in the windows of the Oceanographic Museum.
16633 thumbnail picture
Figure 22. Chemical elements that are dissolved in sea water. Major elements are sodium, magnesium, calcium, potassium, silicon, carbon, sulfur, oxygen, chlorine, bromine, and iodine. Minor elements are titanium, nitrogen, phosphorus , arsenic, boron, rubidium, cesium, lithium, strontium, barium, zinc, copper, silver, gold, aluminum, lead, manganese, iron, cobalt, and nickel.
16634 thumbnail picture
Figure 23. Display demonstrating the amount of dissolved gased in sea water. Each glass cube is 1 decimeter cubed in volume. The glass bulbs represent the amount of dissolved quantities of O2, N, and CO2 in the first two at low temperature and high temperature respectively, while the third cube represents the total amount of CO2, both dissolved and in other chemical compounds.
16635 thumbnail picture
Figure 24. Quantity of arsenic in marine plants as noted by the French pharmacist and chemist Henri Marcelet as the result of studies at the Oceanographic Museum in 1912.
16636 thumbnail picture
Figure 25. Samples of different types of marine sediments. This display was conceived by Professor Julien Thoulet in 1905 to both educate the public but also as guide for sailors who used bottom samples as a guide in piloting.
16637 thumbnail picture
Figure 26. Effects of pressure on different types of hollow tubes as studied by John Young Buchanan, both during his experiences on the CHALLENGER expedition and with Prince Albert I of Monaco on the PRINCESS ALICE II in 1902. Buchanan published his study of hyperpressure effects in 1903. The brass tube, copper sphere, and debris from a Portier and Richard bottle were all studied in 1902.
16638 thumbnail picture
Figure 27. Model of an Ekman Current Meter. This type of current meter was invented by V. Wilfred Ekman in about 1903. It had a novel method of recording current speed and direction. In effect small marbles were distributed by a drainpipe on the magnetized pointer for recording direction while the number of marbles was proportional to the strength of current.
16639 thumbnail picture
Figure 28. Model of a machine for generating electricity based on differences of temperature between the sea surface and great depth. This "thermal machine" was devised by the physicist Georges Claude and the engineer Paul Boucherot in 1926. It was an application of Carnot's theorem and was a forerunner of the modern ocean thermal energy conversion (OTEC) project.
16640 thumbnail picture
Figure 29. Model of the dynanometer with enclosed springs used on the HIRONDELLE . On the left is the assmbled model while on the right is the tension scale showing the tension placed on an oceanographic cable during operations.
16641 thumbnail picture
Figure 30. Samples of steel cable used by Prince Albert I of Monaco during his oceanographic studies. Various diameter cables were used with different types equipment at varying depths.
16642 thumbnail picture
Figure 31. A model of the deck gear, pullies, and booms used for dredging on the PRINCESSE ALICE II.
16643 thumbnail picture
Figure 32. Meteorological kite flown from the PRINCESS ALICE II. Professor Hugo Hergesell of Strasbourg interested Prince Albert in exploring the high atmosphere. As such, the first studies of the upper atmosphere while at sea were conducted off the PRINCESS ALICE II on April 12, 1904, to an altitude of 4500 meters.
Atlantic Ocean 43 35.8 N Lat., 7.75 W Long. 1904 April 12
16644 thumbnail picture
Figure 33. Meteorological register used with hydrogen weather balloons flown from the PRINCESSE ALICE II on April 5, 1905 from a station north of Corsica. The balloons and register attained a height of 8000 meters before the balloons burst and the instruments were parachuted to the sea for recovery and reading. Readings from two temperature sensors and a pressure sensor were recorded.
North of Corsica, Mediterranean Sea 1905 4 April
16645 thumbnail picture
Figure 34. Anemometer and dial - an anemometer of this type was shown in the catalog of the firm of Richard Brothers in 1886.
16646 thumbnail picture
Figure 35. A wind direction recording instrument offered by the firm of J. Richard in 1901.
16647 thumbnail picture
Figure 36. A modern wind direction indicator or weathervane that would transmit wind direction to a recording device. The use and history of this instrument is impossible to determine.
16648 thumbnail picture
Figure 37. Assman aspirating psychrometer, used to determine relative humidity by comparing dry and humid air temperatures. The instrument was designed on principles discovered by the German Ernst Ferdinand August, the director of the Gymnasium of Berlin, in 1825. Professor Richard Assman of the Meteorological Institute of Berlin, built this instrument about 1886.
16649 thumbnail picture
Figure 38. Hygrometer register, built to record variations in relative humidity. The hygrometer is built on principles discovered by Horace Benedict Saussure in 1783 and uses the changes in length of human hair and animal hair with humidity to derive relative humidity. The exact age of this recording instrument is unknown.

PAGES - 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 |


Publication of the U.S. Department of Commerce, National Oceanic & Atmospheric Adminstration (NOAA),
NOAA Central Library
NOAA Privacy Policy | NOAA Disclaimer
Last Updated:
June 10, 2016